Groundwater Overdraft and Management

Kenneth D. Schmidt
Principal
Kenneth D. Schmidt & Associates

Water-Level Hydrographs for Wells East of Sanger

Water-Level Hydrographs for Well Southwest of Madera

Water-Level Hydrographs for Lower Aquifer Wells in the Lakeside Area

Water Budget for Groundwater

Sources of Inflow	Amount (AF/yr)
Streamflow Seepage	
Canal Seepage	
Deep Percolation from Irrigation	
Groundwater Inflow	
Intentional Recharge	
Subtotal:	The second
Sources of Outflow	Amount (AF/yr)
Pumpage	
Groundwater Outflow	
Subtotal:	
Change in Storage: Inflow minus Outflow =	

Change in Storage Based on Water Levels

- Water-level change (ft/yr) × specific yield (%) × Area = ____ (AF/yr)
- Specific yields commonly range from 10 to 20%
- For unconfined aquifers only.

San Joaquin Valley Hydrologic Study Areas

Estimates of Groundwater Overdraft

Early 1970's Basin 5D 2 million acre-feet per year

Projected 2000 Basin 5D 1.3 million acre-feet per year

2009 (USGS PP 1760) Central Valley 1.3 million acre-feet per year

Present San Joaquin Valley 1.5 to 2.0 million acre-feet per year

Subsurface Geologic Cross Section Beneath Five Points Subarea

Land Subsidence in the Westlands Water District (1926-1972)

Irrigation Efficiency

Consumptive Use of Applied Water = ____ %
Applied Water

- Low Values: 40 to 50%
- High Values: 90%
- Depends on topsoils and method of irrigation
- Commonly:
 - 80 to 90% for drip irrigation
 - 65 to 70% for sprinkler irrigation
 - 40 to 50% for furrow and basin irrigation

Impact of Different Irrigation Efficiencies

- Low irrigation efficiencies in areas with surface water supplies resulted in large amounts of recharge of low salinity water, spread out over large areas.
- High irrigation efficiencies result in less recharge from irrigation and higher increases in salinity for the shallow groundwater.

Sustainable Groundwater Pumpage

- Compare the amount of surface water available to the consumptive use of applied water.
- If the surface water is greater than the consumptive use, water levels will rise and there will normally be groundwater outflow.
- If the surface water is less than the consumptive use, water levels will fall and groundwater inflow will be enhanced.
- If the surface water and consumptive use are equal, groundwater levels will be stable.
- The groundwater aquifer should be considered a storage space for surface water, and not a source of water supply itself.

Sustainable Groundwater Pumpage

One interpretation:

- If one has no surface water and is not next to a river that is a losing stream, then all of the groundwater pumpage is generally not sustainable.
- The only sustainable groundwater pumpage is where there is adequate surface water to balance the consumptive use, unless there is sustainable groundwater inflow to create a balance.

Water-level Elevations in Lower Aquifer Wells in December 1965

Water-level Elevations in Lower Aquifer Wells in November-December 1993

Determining Groundwater Flow

Use Darcy's Law: Q = TIL

Q: amount of groundwater flow

T: transmissivity

I: hydraulic gradient

L: width of flow

"I" is determined from shallow and deep zone groundwater maps.

"T" is determined from aquifer tests.

Note: Groundwater modeling is not considered an accurate approach to determine transmissivity.